Arithmetic Progression (A.P.) Class X ICSE Mathematics MCQs

Spread the love

 

Click here to open MCQs

Solutions of the above MCQs of Arithmetic Progression is given below

                   Solutions  

Question 1;    The 16th term of the A. P.    13,  7,  1,  −5,  −11,  ——-  is 

  • (a)  − 77
  • (b)   103
  • (c)  − 512 
  • (d)   928 

Solutions:  a = 13,  d = 7 − 13 = − 6

tn  = a + (n − 1 ) d

16th term = t16  13 + (16 −1) (−6)= 13 − 90 = − 77    

Option (a) 

Question 2:    If  (3/4),  a,  2  are in A.P., then a =?

  • (a)   (11/8)
  • (b)    (7/8)
  • (c)    (3/8)
  • (d)    (5/8) 

Solution:   As  (3/4),  a,  2  are in A.P.,

a − (3/4) = 2 − a

⇒  2a = 2 + (3/4)

⇒  2a =  (11/4)

⇒  a =  (11/8)

Option (a) 

Question 3:     Which term of the A.P.   4,  9,  14,  19,  …….. is 79? 

  • (a)  15th
  • (b)  16th
  • (c)   14th
  • (d)   18th

Solution:   a = 4,   d = 9 − 4 = 5 , let nth term be 79

As     t  = a + (n − 1) d 

⇒     79 =  4 + (n −1) 5

⇒   79 = 4 + 5 n − 5

⇒ 5 n = 80    ⇒ n = 16

Option (b) 

 Question 4:  The nth term of an A.P. is given by T = (4n − 7) 

(i)  Find its first term 

  • (a)   11
  • (b)  − 3
  • (c)     1
  • (d)    4

Solution:    Tn  = (4 n −7) 

∴  first term =  T1  = 4 × 1 − 7 = − 3 

Option (b)

(ii) Find common difference

  • (a)   11
  • (b)  −3
  • (c)     1
  • (d)     4

Solution:     T = 4 × 2 − 7 = 1

T = 4 × 3 − 7 = 5

T4  = 4 × 4 − 7 = 9

∴ common difference = T − T1  = T3  −   T2  =  4

Option (d)

(iii)  Find 2nd term  

  • (a)   11
  • (b)  −3
  • (c)     1
  • (d)     4

Solution:     2nd term = T =  1

Option (c)

Question 5:  Which term of the A.P.  92,  88,  84, …… is 0?

  • (a)  23rd
  • (b)  24th
  • (c)  27th
  • (d)  28th

Solution:  a = 92,   d = 88 − 92 = − 4

Let nth term be 0.   So t = 0

t =  a + (n −1) d 

⇒   0 =  92 +(n −1) (−4)

⇒  0  = 92 − 4n + 4

⇒ 4n = 96  ⇒ n = 24

Option (b)

Question 6:  Which term of the A.P.   41,  38,  35, ….. is the first negative term?

  • (a)  14th
  • (b)  15th
  • (c)   16th
  • (d)   17th

Solution:  a = 41,   d = − 3

Let nth term be the first negative term.

∴      tn   < o 

⇒  41 + (n −1) (−3)  < 0

⇒  41  − 3 n + 3 < 0

⇒  44  <  3 n

⇒  3 n > 44

⇒  n  >  (44/3)

⇒ n >  14 + (2/3)

So  first negative term is 15th term

Option (b) 

Question 7:  The 10th term from the end of an A.P.   7,  10,  13,  …., 184  is

  • (a)  151
  • (b)  154
  • (c)  160
  • (d)  157

Solution:   The series from the end is:      184, ……, 13, 10, 7

So a = 184,    d = 10 − 13 = − 3

10th term = t10 = 184 + (10 −1) (−3) 

=  184 − 27 = 157

Option (d) 

Question 8:  How many two-digit numbers are there

which are divisible by 6?

  • (a)  14
  • (b)  15
  • (c)  16
  • (d)  17

Solution:  The series is  6, 12, 18, …….., 96

a = 12,    d = 6,  let t = 96 

as    t = a + (n −1) d 

⇒  96 = 12 + (n − 1) 6

⇒  96 = 6 n + 6 

⇒ 6 n = 90    ⇒ n = 15

Option (b) 

Question 9:       5 + 9 + 13 + 17 + …….. up to 23 terms = ?

  • (a)   1123
  • (b)  1125
  • (c)   1127
  • (d)  none of these

Solution:      a = 5,    d = 9 − 5 = 4 ,   n = 23

S23  =   (n/2) {2a + (n −1) d}

= (23/2) {2 × 5 + (23 −1) 4

= (23/2) (10 + 88)

= (23/2) × 98 = 1127   

Option (c) 

Question 10:   How many terms of the A.P.  6,  12,  18,  24, …… must

be taken to make the sum 816?

  • (a)  14
  • (b)  16
  • (c)  17
  • (d)  20 

Solution:  a = 6,  d = 12 − 6 = 6 ,  let  Sn  = 816

As     S = (n/2) {2a + (n −1) d} 

⇒ 816 = (n/2) {2 × 6 + (n −1) 6}

⇒ 816 = (n/2) (12 + 6n −6)

⇒ 816 = (n/2) (6n +6)

⇒ 816 = 3n(n+1)

⇒ 272 = n² + n

⇒ n² + n − 272 = 0

⇒ n² + 17 n – 16 n – 272 = 0

⇒  (n + 17) (n − 16) = 0

either n = −17 (no of terms can’t be negative),  n = 16

Option (b) 

Question 11:   The angles of a triangle are in A.P.

whose common difference is thirty degrees. Find the angles.

  • (a) 40°, 60°, 80°
  • (b) 30°,  60°, 90°
  • (c)  40°, 70°, 100°
  • (d)  60°, 90°, 120°

Solution:  d = 30°,  let the angles are a, a+ 30°, a+60°

∴  a + a + 30° + a + 60° = 180°

⇒ 3a = 90°  ⇒ a = 30°

the angles of the triangle are  30°,  60°, 90°

Option ((b) 

Question 12:  In a flower bed there are 32 rose plants in the

first row, 30 in the second row, 28 in the third row, and so on.

There are 10 rose plants in the last row. 

(i) How many rows are there in the flower bed? 

  • (a)  10
  • (b)  11
  • (c)  12
  • (d)  15

Solution: The series is      32,  30,  28, ……, 10

a = 32,  d = 30 − 32 = −2,  let no of rows = n.  So t= 10

t = a + (n −1) d

⇒ 10 = 32 + (n −1) (−2)

⇒ 10 = 32 − 2n + 2

⇒  2n = 24    ⇒ n = 12

Option (c) 

(ii) How many rose plants are there in the flower bed?       

  • (a)  242
  • (b)  252
  • (c)  280
  • (d)  516

Solution: Total no of rose plants

= S12  = (12/2) {2 × 32 + (12 −1) (−2) 

= 6 (64 −22) = 252

Option (b) 

Question 13: Find the sum of the first 15 multiples of 8.

  • (a)  540
  • (b)  900
  • (c)  952.5
  • (d)  960

Solution:  The series is    8,  16,  24,  32, …. up to 15 term

a = 8,   d = 16 −8 = 8,  n = 15

∴ S15  = (15/2) { 2 × 8 + (15 −1) 8} 

= (15/2) (16 + 112)

= (15/2) × 128 =  960

Option (d) 
ICSE – Class 10 – Mathematics – Sem 1 – 2021 – Sample Paper

Mock Question Paper
ICSE – Class 10  -Mathematics   –     Sem 2  –    2022 – Sample Paper

                              Sample Paper 1                Solutions of Sample Paper 1

 

                 MCQ               Class 10            Mathematics

Banking (Set 1)
Banking (Set 2)
GST
Linear Inequations (Set 1)
Linear Inequations (Set 2)
Quadratic Equations
Ratio and Proportion
Matrices
Arithmetic Progression (A.P.)
Similarity (Set 1)
Similarity (Set 2)
Reflection
Section Formula
Straight Lines
Probability
Circle (Set 1)
Circle (Set 2)
Mock Question Paper for Semester 1 (2021) ICSE Class X Mathematics
ICSE Class X – Specimen Question Paper released by CISCE for Semester 1 (2021) – Mathematics

          Formula             Mathematics

Formula and Theorems for Class X

MCQ         Class 10      Physics

Sound

ISC / ICSE  Board Paper

ISC  – Class 12 – 2020 – Mathematics Question Paper
ISC –  Class 12 – 2019 –  Mathematics Question Paper
ICSE – Class 10 – 2020- Mathematics Question Paper 
ICSE – Class 10 – 2019 – Mathematics Question Paper
ICSE – Class 10 – 2018 – Mathematics Question Paper
ICSE – Class 10 – 2019 – Physics Question Paper
ICSE – Class 10 – 2018 – Physics Question Paper 
ICSE – Class 10 -2020- Mathematics Question PaperSolutions

Contents – Tapati’s Classes

1 thought on “Arithmetic Progression (A.P.) Class X ICSE Mathematics MCQs

Leave a Reply

Your email address will not be published. Required fields are marked *