Formulas of Integration for Class 11 and 12 Mathematics

Spread the love

Tapati’s Classes

Integration is the reverse process of differentiation.

By differentiation, we find the derivative of the given function, whereas by integration we find the function whose derivative is known.  The function is called the integral of the given function.

The process of determining an integral of a function is called integration and the function to be integrated is called the integrand.

The letter  x  in  dx  denotes that the integration is to be performed with respect to the variable  x.

Formula

(1)      \int x^{n}dx=\frac{x^{n+1}}{n+1}+c                                 c is the integration constant

(2)      \int \frac{dx}{x}=log\left | x \right |+c

(3)      \int e^{x}dx=e^{x}+c                         and                \int e^{mx}dx= \frac{e^{mx}}{m}+c

(4)    \int a^{x}dx= \frac{a^{x}}{log_{e\, }a}+c                    and                \int a^{mx}dx= \frac{a^{mx}}{m\, log_{e\, }a}+c

 

(5)    \int sin\, x\, dx=-cos\, x+c             and                  \int sin\, mx\, dx= -\, \frac{cos\, mx}{m}+c

(6)    \int cos\, x\, dx= sin\, x+c                  and                  \int cos\, mx\, dx=\frac{sin\, mx}{m}+c

(7)    \int sec^{2\, }x\, dx=tan\, x+c                and                  \int sec^{2\, }mx\, dx=\frac{tan\, mx}{m}+c

(8)    \int cosec^{2\, }x\, dx=-\, cot\, x+c          and                \int cosec^{2\, }mx\, dx=-\, \frac{cot\, mx}{m}+c

(9)    \int sec\, x\,\, tan\, x\,\, dx=sec\, x+c         and              \int sec\, mx\, \, tan\, mx\, \, dx= \frac{sec\, mx}{m}+c

(10)    \int cosec\, x\, \, cot\, x\, \, dx=-\, cosec\, x+c       and    \int cosec\, mx\, \, cot\, mx\, \, dx=-\frac{cosec\, mx}{m}+c

 

(11)      \int tan\, x\, \, dx=log\left | sec\, x \right |+c    or    -\, log\left | cos\, x \right |+c

(12)      \int cot\, x\, \, dx=log\left | sin\, x \right |+c

(13)      \int sec\, x\, \, dx= log\left | sec\, x+tan\, x \right |+c    or    log\left | tan\left ( \frac{\pi }{4}+\frac{x}{2} \right ) \right |+c

(14)      \int cosec\, x\, \, dx=log\left | cosec\, x-cot\, x \right |+c   or    log\left | tan\left ( \frac{x}{2} \right ) \right |+c         

 

(15)      \int \frac{dx}{x^{2}+a^{2}}=\frac{1}{a}\, tan^{-1}\left ( \frac{x}{a} \right )+c

(16)      \int \frac{dx}{x^{2}-a^{2}}=\frac{1}{2a}\, log\left | \frac{x-a}{x+a} \right |+c

(17)    \int \frac{dx}{a^{2}-x^{2}}=\frac{1}{2a}\, log\left | \frac{a+x}{a-x} \right |+c

(18)    \int \frac{dx}{\sqrt{x^{2}+a^{2}}}=log\left | x+\sqrt{x^{2}+a^{2}} \right |+c

(19)    \int \frac{dx}{\sqrt{x^{2}-a^{2}}}=log\left | x+\sqrt{x^{2}-a^{2}} \right |+c, \, \, \, \left | x \right |>a

(20)    \int \frac{dx}{\sqrt{a^{2}-x^{2}}}=sin^{-1}\left ( \frac{x}{a} \right )+c ,    \left | x \right |<a

(21)    \int \frac{dx}{x\, \sqrt{x^{2}-a^{2}}}=\frac{1}{a}\,\, sec^{-1}\left ( \frac{x}{a} \right )+cx>a

 

(22)    \int \sqrt{x^{2}+a^{2}}\,\, \, dx= \frac{x\, \sqrt{x^{2}+a^{2}}}{2}+\frac{a^{2}}{2}\:log\left | x+\sqrt{x^{2}+a^{2}} \right |+c

(23)    \int \sqrt{x^{2}-a^{2}}\,\, \, dx= \frac{x\, \sqrt{x^{2}-a^{2}}}{2}-\frac{a^{2}}{2}\: log\left | x+\sqrt{x^{2}-a^{2}} \right |+c

(24)    \int \sqrt{a^{2}-x^{2}}\, \, \, dx=\frac{x\, \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2}\, \, sin^{-1}\left ( \frac{x}{a} \right )+c

 

INTEGRATION BY PARTS

\int u\: v\: dx=u\: \int v\: dx-\int \left ( \frac{\mathrm{d} u}{\mathrm{d} x}\int v\: dx \right )\: dx+c

In words: Integral of the product of two functions = first function × integral of second− integral of (derivative of first×integral of second).

 

Properties of definite Integrals:—-

(I)        \int_{a}^{b}f(x)\, dx=\int_{a}^{b}f(z)\, dz

(II)      \int_{a}^{b}f(x)\, dx=-\, \int_{b}^{a}f(x)\, dx

(III)    \int_{a}^{b}f(x)\, dx=\int_{a}^{c}f(x)\, dx+\int_{c}^{b}f(x)\, dx\: \mathrm{where}\: a<c<b

(IV)      \int_{a}^{a}f(x)\, dx=0

(V)        \int_{0}^{a}f(x)\, dx=\int_{0}^{a}f(a-x)\, dx

(VI)      (i)         \int_{0}^{2a}f(x)\, dx=\int_{0}^{a}f(x)\, dx+\int_{0}^{a}f(2a-x)\, dx

(ii)       \int_{0}^{2a}f(x)\, dx=2\, \int_{0}^{a}f(x)\, dx,\, \, \mathrm{if}\: f(2a-x)=f(x)

and 

\int_{0}^{2a}f(x)\, dx=0, \: \mathrm{if}\: f(2a-x)=-\, f(x)

(VII)                \int_{-\, a}^{a}f(x)\, dx=2\, \int_{0}^{a}f(x)\, dx,\, \, \mathrm{if}\: f(x)\: \mathrm{is\, an\, even\, function\, of\,}\, x

  and

\int_{-\, a}^{a}f(x)\, dx=0, \: \mathrm{if}\: f(x)\: \mathrm{is\, an\, odd\, function\, of\, }x

(VIII)              \int_{a}^{b}f(x)\, dx=\int_{a}^{b}f(a+b-x)\, dx

XI - XII M F Integration 1 XI - XII M F Integration 2 XI - XII M F Integration 3
               ISC              Class 12                   Mathematics

Previous Years Board Questions Solutions of Previous years Board Questions
Inverse Trigonometric Functions (2000 to 2020) Inverse Trigonometric Functions (2000 to 2020)
Matrices (2000 to 2020) Matrices (2000 to 2020)
Determinants (2000 to 2020) Determinants (2000 to 2020)
Differentiation (2000 to 2020) Differentiation (2000 to 2020)
Rolle’s Theorem and Lagrange’s Mean Value Theorem (1998 to 2020) Rolle’s Theorem and Lagrange’s Mean Value Theorems (1998 to 2020)
Maxima and Minima (2000 to 2020) Maxima and Minima (2000 to 2020)
Integration (1990 – 2011) Integration (1990 – 2011)
Integration (2012 to 2020) Integration (2012 to 2020)
Differential Equations (1991 to 2005) Differential Equations (1991 to 2005)
Differential Equations (2006 to 2020) Differential Equations (2006 to 2020)
Probability (Addition and Multiplication Theorem-Conditional Probability) (1993 to 2020) Probability (Addition and Multiplication Theorem, Conditional Probability) (1993 to 2020)
Probability (Baye’s Theorem) (2000 to 2019) Probability (Baye’s Theorem) (2000 to 2019)
Probability (Probability distribution and Binomial distribution) (1992 to 2020) Probability (Probability distribution and Binomial distribution) (1992 to 2020)
Application of Calculus in Commerce and Economics (2005 to 2020) Application of Calculus in Commerce and Economics (2005 to 2020)
Linear Programming (2008 to 2020) Linear Programming (2008 to 2020)
Linear Regression (2005 to 2020)
 
          Formula             Mathematics

Formula and Theorems for Class X
Class XI Formula Trigonometry
Inverse Trigonometric Functions – Class 12
 
Differentiation and Limits for Class 11 and 12
 
Integration for Class 11 and 12
 
 Linear Regression – Class 12- ISC
            MCQ              Class 12         Mathematics

Relations and Functions
Inverse Trigonometric Functions
Matrices
Determinants
Continuity and Differentiability
Tangents and Normals
Maxima and Minima
Increasing and Decreasing Functions
Application of Calculus in Commerce and Economics (Set I)
Application of Calculus in Commerce and Economics (Set II)
Integration MCQs (Set 1)
 Integration MCQs (Set 2)
Specimen Paper for Semester 1 – 2021 – ISC – Class XII Mathematics
Linear Regression
ISC   –   Class 12  –  Mathematics  –  Sem 2  –  2022  – Sample Paper

                            Sample Paper 1
                            Sample Paper 2
ISC – Class 12 –  Mathematics – Sem 1 – 2021 – Sample Paper

                         Specimen Paper
ISC- Class 12 – Mathematics – Sem 2 – 2022 – Chapterwise Questions

                      Differential Equations
     ISC / ICSE  Board Paper

ISC  – Class 12 – 2020 – Mathematics Question Paper
ISC –  Class 12 – 2019 –  Mathematics Question Paper
ICSE – Class 10 – 2020- Mathematics Question Paper 
ICSE – Class 10 – 2019 – Mathematics Question Paper
ICSE – Class 10 – 2018 – Mathematics Question Paper
ICSE – Class 10 – 2019 – Physics Question Paper
ICSE – Class 10 – 2018 – Physics Question Paper 
ICSE – Class 10 -2020- Mathematics Question PaperSolutions

Contents – Tapati’s Classes

 

Click to download the formula for Integration

3 thoughts on “Formulas of Integration for Class 11 and 12 Mathematics

Leave a Reply

Your email address will not be published. Required fields are marked *