7.	Maximize $z = 50x + 60y$ subject to $5x + 8y \le 180$, $10x + 8y \le 240$, $x \ge 0$, $y \ge 0$. Maximum profit is ₹ 1500 when 12 units of type A and 15 units of type B is produced.	(ISC 2014)
8.	Minimize $z=24x+36$ y subjects to the constraints $x+2y\geq 10,\ x+y\geq 6,\ 3x+y\geq 8,\ x\geq 0,\ y\geq 0.$ Least cost is \P 192 and is obtained when 2 kg of food X is mixed with 4 kg of food Y.	(ISC 2015)
9.	Maximize $z=40x+50y$ subject to the constraints $3x+y\leq 9, x+2y\leq 8, x\geq 0, y\geq 0$ Maximum profit is \gtrless 230, when 2 units of type A and 3 units of type B are produced.	(ISC 2016)
10.	Minimize $z = 5x + 8y$ subject to the constraints $2x + y \ge 140$, $3x + 5y \ge 350$ $x \ge 0$, $y \ge 0$ Minimum cost is $₹ 570$ and is obtained when 50 kg of fertilizer A is mixed with 40 kg of fertilizer B.	(ISC 2017)
11.	Maximize $z = 80x + 120y$ subject to the constraints $3x + 4y \le 60$, $x + 3y \le 30$, $x \ge 0$, $y \ge 0$ Maximum profit is ≤ 1680 and is obtained when 12 units of type A and 6 units of type B is produced per week.	(ISC 2018)
12.	Maximize $z = 48x + 40y$ subject to the constraints: $2x + y \le 90$, $x + 2y \le 80$, $x + y \le 50$, $x \ge 0$, $y \ge 0$ Maximum gross income is ₹ 2,320. For maximum gross income the carpenter should make 40 units of product A and 10 units of product B.	(ISC 2019)
13.	Maximize $z=x+1.50\ y$ subject to the constraints: $x+2y\le 40,\ 2x+y\le 40,\ x+y\le 25,\ x\ge 0,\ y\ge 0$. Maximum profit is ≤ 32.5 and 10 half sleeve shirts and 15 full sleeves shirts should be made per week to maximize profit.	(ISC 2020)
14.	Maximize Profit (in \P), $z = 30 \ x + 20 \ y$ Subject to the constraints $12x + 6y \le 360 \qquad \text{or} 2x + y \le 60$ $6x + 9y \le 360 \qquad \text{or} 2x + 3y \le 120$ $x \ge 0, y \ge 0$ When 15 toys of type A and 30 toys of type B are manufactured per day, Profit is maximum and maximum profit is \P 1050.	(ISC 2022)